Strategies for Countering Fake Information:

new trends in multimedia authenticity verification and source identification

Irene Amerini amerini@diag.uniroma1.it

About me

- Sep 2019: Dept. of Computer, Control, and Management Engineering "A. Ruberti"
 - Università degli studi di Roma "La Sapienza"

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

About me

- MFS-Lab, Media Integration and Communication Center (MICC).
 - Università degli Studi di Firenze, Italy •
- 2010 Scolarship, Digital Data Embedding Laboratory, Binghamton University, Binghamton (NY), US
- 2018 Visiting Fellow, Charles Sturt University, Wagga Wagga, Australia

Australian Government

The context: weaponized information

•

•

- The impact of Fake Information becomes fundamental, in the context of weaponized information and information warfare. where the organic propagation of virulent misinformation is under analysis.
 - and videos directly Images inoculate Ο messages and have strong impact on personal opinions. -

Propaganda/Military

In a court of law

Reputation attacks

Insurance frauds

Not only images

Not only images

- Deep Fakes phenomena with Al
- Deepfake videos are AI-generated realistic sequences

https://beebom.com/best-deepfake-apps-websites/

On the web

- Tom Cruise (ago 2019)
 - o <u>https://www.youtube.com/watch?v=VWrhRBb-1lg</u>
- Matteo Renzi (sep 2019)
 - o <u>https://www.youtube.com/watch?v=E0CfdHG1sls</u>
- 20 celebrities (oct 2019)
 - <u>https://www.youtube.com/watch?time_continue=</u>
 <u>37&v=5rPKeUXjEvE</u>

How to «secure» an image or a video?

- Digital watermarking/Encryption
- Blockchain
- Image and Video Forensics

Image and Video Forensics

- To assess origin and originality of an image or video.
- Image and video forensic techniques gather information on the history of images and videos contents.
 - Each manipulation leaves on the media peculiar traces that can be exploited to make an assessment on the content itself.

Each phase leaves distinctive footprints!

- at the signal level
- at the metadata/file container level

Basic principles

- Only the image (video) and sometimes the device in our hands.
- No external information like metadata.

Blind: Original reference media is not required

No side information like metadata

Passive:

Different from "active methods" which hide a mark in a picture when it is created like *digital watermarking*

- No specific on-device hardware required
- Acquisition process and post-processing operations leave a distinctive imprint on the data like a **digital fingerprint**.
 - Fingerprint extraction
 - Fingerprint classification

010101 0	1010100 001	01010 114
1010101	01010100085	Sight 0 111
010101010	AND ADDRESS OF	2283 am 1704
0101	A COMPANY	8000 +01
101 100	HEREESSAW	0.01 0.090
101	THAN YO BERT	ANA CONTRACTOR
10 22	Second States	REBU 001
116	STATISTICS STATISTICS	100
1110	Cart Mine	010101010
0101 10/2	and the first the	01010 101
1001000	010110 1001	0101 001
the second s	the second second second second	The share had been

Image and Video Forensics

- **Source identification**: link a multimedia content to a particular (class of) acquisition device(s).
- Forgery detection: deciding on the integrity of the media
- Adversarial forensics/Counter forensics

PART 1

Source Identification

Source identification

Source identification

• Which **BRAND/MODEL**

Source identification

• Which **DEVICE**

Which Nikon D3300?

The acquisition process (in detail)

CCD sensor imperfections

- PRNU (Photo Response Non Uniformity Noise) is caused by the different sensitivity of the sensors to light
 - Due to the manufacturing process
 - Does not depend on temperature and time
- If we capture this noise pattern, we can create a distinctive link between a camera and its photos

[Fridrich at Al, TIFS 2006]

PRNU fingerprint model

A digital image I taken from camera C can be modeled as

Observation: The PRNU pattern noise is a multiplicative noise

PRNU fingerprint detection

- Let **Y** be an input image (from the same camera C or another one)
- The presence of *K* in **Y** can be determined by means of the **correlation detector**

where:

$$corr(X,Y) = \frac{(X-\overline{X}) \cdot (Y-\overline{Y})}{\|X-\overline{X}\| \|Y-\overline{Y}\|}$$

$$X \cdot Y = \sum_{i,j} X[i,j]Y[i,j]$$

$$||X|| = \sqrt{X \cdot X}$$
Noise residual of image Y
Reference fingeprint
Reference fingeprint
Reference fingeprint

A well known analogy

Firearms Identification

Digital Cameras Identification

Social Network identification

• In general, **source identification** is the process to link a multimedia content to a particular **acquisition device**.

• Lately source identification also refers to establish the social network of origin.

Social network identification

- Social Networks (SNs) are privileged channel for systematic and uncontrolled distribution of MM contents mainly images
 - Image shares are so quick that is not easy to follow their paths.
- In a forensic scenario (e.g. an investigation), it could be strategic understanding this flow so to reveal the intermediate steps followed by a certain content.
 - Resorting at the specific traces left by each SN on the image (**content** and **file**) due to the process each of them applies.

The rationale

- Uploading an image on a social network:
 - the process alters images
 - Resize, re-compression
 - New JPEG file structure
 - Rename
 - Meta-Data deletion/editing
 - each social network service (SNs) do different alterations with different rules

Some rules

Social	EX	IF		File Size	JPEG Compression		
	Camera Data	Other Data	Resize	Resize Condition	Re-Compression	Re-Compression Condition	
Facebook	Delete	Delete	Yes	LQ: $M > 960$ HQ: $M > 2048$	Yes	Always	
Google+	Maintain	Maintain/Edit	Yes	M > 2048	Yes	M > 2048	
Flickr	Delete	Maintain/Edit	Yes	Depends on options	Yes	Depends on options	
Tumblr	Maintain	Maintain/Edit	Yes	M > 1280	Yes	M > 1280	
Imgur	Delete	Delete	No	Never	Yes	Image Size (MB) > 5.45 MB	
Twitter	Delete	Delete	Yes	M > 2048	Yes	Always	
whatsApp	Delete	Delete	Yes	M > 1600	Yes	Always	
Tinypic	Maintain	Maintain/Edit	Yes	M > 1600	Yes	M > 1600	
Instagram	Delete	Delete	Yes	M > 1080	Yes	Always	
Telegram	Delete	Delete	Yes	M > 2560	Yes	Always	

Social	Rename (image ID in bold)	Image Lookup	Other information
Facebook	11008414_746657488782610_8508378989307666639_n.jpg	YES	Upload resolution
Flickr	26742193671_8a63f10c85_h.jpg	YES	Download resolution (h=1600)
Tumblr	tumblr_o3q9ghRCRh1vnf44lo9_1280.jpg	YES	Download resolution (1280)
Imgur	04 - Dw0KXG2.jpg	YES	
Twitter	CdqCPQ-WAAAzrHI.jpg	YES	
WhatsApp	IMG-20160314-WA0038.jpg	NO	Receiving Date (2016-03-14)
Tinypic	1zqdirm.jpg	NO	
Instagram	1689555_169215806798447_744040439_n.jpg	YES	Upload Resolution
Telegram	422114602_5593965449613038107.jpg	NO	

The goal

Classify images according to the social network of provenance

• By identifying the distinctive and permanent trace "inevitably" imprinted in each digital content during the upload/download process by every specific social network.

The idea

- Resorting at **image content-based features** to intercept processing affecting image itself such as JPEG multiple compressions, resizing, filtering and so on.
- Resorting at **metadata-based features** to take into account of changes to characteristics of the image file (e.g. quantization tables, image size).

Social Network Provenance: on image content

FusionNET: CNN-based framework for addressing the social network and instant messaging app identification

- Dual-modal features for image representation: the histogram of DCT and the sensor noise residuals
- Two CNN branches fed with the respective feature modalities to pull out activation vectors
- Fusion of activation vectors
- Classification of source SNs and IMAs of the images in question.

Australian Government University

I. Amerini et Al, "Image origin classification based on social network provenance", IEEE TIFS 2017

Some results

Classification (%) vs SNs	Facebook	Flickr	Google+	Instagram	Original	Telegram	Twitter	WhatsApp
	f		G	Ø		0		0
Facebook	91.31	6.21	0.00	0.08	2.40	0.00	0.00	0.00
Flickr	0.90	86.77	0.03	0.18	3.26	0.70	8.14	0.02
Google+	0.01	0.03	88.01	0.48	11.44	0.02	0.00	0.02
Instagram	0.40	0.00	0.00	98.80	0.80	0.00	0.00	0.00
Original	0.00	0.00	0.00	0.00	99.01	0.99	0.00	0.00
Telegram	0.01	0.00	0.00	0.00	1.12	98.87	0.00	0.00
Twitter	0.11	2.00	0.00	0.00	1.51	0.11	96.27	0.00
WhatsApp	0.00	0.12	0.00	0.03	0.72	0.00	0.00	99.13

IPLAB dataset (4 devices, different resolutions, 7 SNs + original)

VISION dataset (10 smartphones, 3 SNs)

 t-SNE on VISION dataset: Facebook (class 0, red) and WhatsApp (class 1, cyan).

	Fb	Wa	Orig	
CNN	f	0		
1D-CNN	97.76	98.61	99.99	
2D-CNN	97.86	97.97	99.79	
FusionNET	99.97	98.65	99.81	

Image-based features

- BxB patches are considered (B=64)
- 8x8 block DCT coefficients are accumulated in histograms for each of the 63 spatial frequencies (DC is skipped!)
- Histograms are taken in a range of values between [-50, +50] ^{[1] [2]}
- A concatenated vector of 101 values is obtained for each DCT coefficient

- [1] Caldelli et al., Image origin classification based on social network provenance, TIFS 2017.
- [2] Amerini et al., Tracing images back to their social network of origin: A CNN-based approach, WIFS 2017

Metadata-based features

- Image dimensions (2 integers) ^[3]
 Quantization tables (64x2=128 integers)
 Number of encoding tables used for AC & DC component (2 integers)
- Optimized coding and progressive mode (2 integers)
- Component information (18 integers)

^[3] Q.-T. Phan et al. Identifying Image Provenance: An Analysis of Mobile Instant Messaging Apps. MMSP 2018.

Multiple up-down classification

Q.-T. Phan, G. Boato, R. Caldelli, I. Amerini, "Tracking Multiple Image Sharing On Social Networks", IEEE International Conference on Acoustics, Speech, and Signal Processing, 2019.

Datasets (multiple)

	Three SNs have I	been considered:	Facebook,	Twitter,	and Flickr
--	------------------	------------------	-----------	----------	------------

- **R-SMUD** (36000 images)
 - O 50 raw images from RAISE [4] dataset
 - O cropped top-left with 9:16 aspect ratio [377x600, 1012x1800, 1687x3000]
 - O JPEG compressed using QF=50,60,70,80,90,100
- V-SMUD (20400 images)
 - O 510 JPEG images selected from VISION ^[5] dataset (15 images x 34 cameras)

[4] D.-T. Dang-Nguyen, et al. RAISE - A Raw Images Dataset for Digital Image Forensics, ACM MM Systems, 2015.
[5] D. Shullani, et al. VISION: a video and image dataset for source identification, EURASIP JIS, 2017.
Exp. results: accuracy on single (C1) and double (C2) shares

	Method	R-SMUD				V-SMUD			
		Patch level		Image level		Patch level		Image level	
		C1	C2	C1	C2	C1	C2	C1	C2
	[11]	-	-	93.70	39.91	-	-	90.20	46.73
	[12]	93.25	51.38	94.81	45.18	92.56	60.22	98.69	54.90
	P-CNN	85.63	45.35	89.63	43.24	85.84	53.79	100.00	58.82
	P-CNN-FF	99.87	73.19	99.87	65.91	100.00	81.97	100.00	77.12

- In the case of single share (3 classes), accuracy is satisfactory.
- In the case of double shares (9 classes), accuracy decreases but it is still good.

Exp. results (V-SMUD): double shares (C2)

If we consider classification of «the last SN»: accuracy is 92% (P-CNN) and 100% (P-CNN-FF).

Exp. results: accuracy on triple shares (C3)

Consecutive up-downloads on the same SN do not affect the image, 39 classes are aggregated into 21 classes.

PART 2

Authenticity verification

Kinds of manipulations

- Image manipulation categories:
 - Image Splicing
 - Copy-Move manipulation
 - o Deepfakes

Kinds of manipulations

- Image manipulation categories:
 - Image splicing
 - Copy-Move manipulation
 - o Deepfakes

Kinds of manipulations

- Image manipulation categories:
 - Image splicing
 - Copy-Move manipulation
 - Deepfakes

Forgery detection

- **Research question:** how a doctored image/video be revealed and localized?
- Given a single probe image, detect if the probe was manipulated and provide mask(s)

Detectors/ Machine learning techniques

The image is doctored with a certain confidence

Copy-move forgery detector (CMFD)

- A pioneer work to detect and localize «copymove» image forgery
- It applies computer vision techniques to image forensics research problems
 - using local visual features and J-linkage clustering
- Definition of benchmarks datasets: MICC F220, MICC F2000, MICC-F600

I. Amerini, et AI, "A SIFT-based forensic method for copy-move attack detection and transformation recovery". IEEE Transactions on Information Forensics and Security, 2011

The copy-move manipulation

Copy-Move Detection: salient point-based

When performing a cloning, usually a geometric transformation is applied to the cloned patch.

TARGET:

Forensic analysis should provide instruments to detect such a cloning and to estimate which transformation has been performed.

- In object detection and recognition, techniques based on scene modeling through a collection of <u>salient points</u> are well established.
- **SIFT** (*Scale Invariant Features Transform*) are usually adopted for their high performances and low complexity.

The proposed CMF detector

Test image

SIFT feature extraction and matching

Scaling, rotation, JPEG compression [Riess, TIFS'12]

PHASE 2

Clustering and forgery detection

Geometric transformation

estimation

Correlation mask and segmentation

PHASE 3

Duplicated regions

localization

The syrian soldier case

Printed images

I. Amerini, R. Caldelli, A. Del Bimbo, A. Di Fuccia, A. P. Rizzo, L. Saravo, "Detection of manipulations on printed images to address crime scene analysis: A case study", Forensic Science International, 2015.

FORimage app

Deepfake phenomena with AI

• Many techniques: FaceTransfer, Face2Face, DeepFake, Deep Video Portaits, FaceSwap etc..

Facial video editing

• Face Swap vs Reenactment/ Video graphics vs Deep Learning (GAN)

[Niesser, CVPR2016]

[FaceSwap]

[FakeApp, Reddit]

What Obama is saying?

https://www.youtube.com/watch?v=cQ54GDm1eL0

Synthesia dubbing and storytelling

A proliferation of datasets

- FaceForensics dataset: Video Dataset for Forgery Detection in Human Faces generated with the F2F facial reenactment algorithm altering facial expressions with the help of a reference actor
- FaceForensics++ (F2F, FaceSwap, DeepFake, Neural Textures) 1000 images for each manipulation methods
- Google
- Facebook
-

Learning to Detect Manipulated Facial Images

- Face tracking method: extract the region of the image covered by the face; this region is fed into a learned classification network that outputs the prediction (RGB patch).
- Classification based on XceptionNet [13] outperforms all other variants in detecting fakes.
- Evaluation of different state-of-the-art classification methods.

[Rossler et Al, ICCV 2019]

Deepfake videos detection in literature

Deepfake videos are usually detected by resorting at **frame-based** approaches which look for:

- spatial inconsistencies in frames
- semantic anomalies (e.g. different colour of the eyes)
- eye blinking absence
- biological signal
- symmetry inconsistencies

Our approach

A **sequence-based** approach is introduced by looking at possible dissimilarities in the video temporal structure

- Optical flow fields have been extracted from the video sequence
- Motion vectors should exploit different inter-frame correlations between fake and original videos
- Such an information is used as input of CNN-based classifiers.

[Amerini et Al, "Deepfake Video Detection through Optical Flow based CNN", Human Behaviour and Understanding Workshop, ICCV 2019]

The optical flow field

- Optical Flow fields describe the apparent motion of objects in a scene due to the relative motion between the observer (the camera) and the scene itself.
- Given two consecutive frames f(t) and f(t+1): $f(x, y, t) = f(x+\Delta x, y+\Delta y, t+1)$
 - OF fields, in our experiments, have been computed by resorting at PWC-Net.

The proposed pipeline

- OF fields are used as input of a semi-trainable neural network
- Neural networks such as *VGG-16* or *ResNet50*, pre-trained on Optical Flow, have been tested
- The last convolutional layers and the dense ones are trained on deepfake dataset

Test set-up

Dataset

- FaceForensics++
- 1000 videos (original and fake for each kind of manipulation)
- 720 for training set, 140 for validation and 140 for test set
- A patch of 300x300 pixels, around the face, is cropped from each frame
- A squared patch of 224x224 pixels is randomly chosen and flipped left-right for data augmentation
- Adam optimizer with learning rate 10⁻⁴, default momentum values and batch size of 256 is used.

Experimental results

- Looking at MVs, particularly around the mouth, a different distribution of the OF field is appreciable:
 - Deepfake case is smoother

REAL

DEEPFAKE

Experimental results

- Results in terms of accuracy have been obtained on the whole test set of *FaceForensics*++ by considering different manipulations
- Accuracy higher than 90% for *FaceForensics*++ dataset (Face2Face, DeepFake, FaceSwap, NT).

Demo

Future trends

- «Universal method» for forgery detection
 - Independent from kind of manipulations and compressions
 - Deep fake «aware»
 - Multimodal approach is recommended
 - Facebook is investing \$ 10M in grants and not only Facebook!!

https://deepfakedetectionchallenge.ai/ https://www.kaggle.com/c/deepfake-detection-challenge

- Source identification on Social Media
 - Both device identification and social network provenance need to be examined in depth

Strategies for Countering Fake Information:

new trends in multimedia authenticity verification and source identification

Irene Amerini amerini@diag.uniroma1.it

