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Outline:

- Machine Learning Intro (Brief)

- Adversarial Attacks:
— Adversarial Examples
— Unrecognizable Images
— Adversarial Patch
— Data Poisoning

- ML to Perform Attacks.

- Putting ML vulnerabilities to good use.

- Evading ML-based Ransomware Detectors
- Working towards resilient ML Detectors
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Machine Learning

Machine learning is a method of data analysis that automates analytical model
building.

It is a branch of artificial intelligence based on the idea that systems can learn

from data, identify patterns and make decisions with minimal human
intervention.
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Types of Machine Learning

Machine
Learning
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Successes of Machine Learning
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Current Situation...
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But...
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Adversarial Examples

“panda” “gibbon”
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Why do Adversarial Examples exist?

The model that is learned after the training
procedure slightly differs from the TRUE
data distribution of the task at hand.

® Training set does not fully capture the
distribution

® The ML algorithm used is not fully
appropriate
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Why do Adversarial Examples exist?

This difference between True and Learned data distribution opens
room for the existence of adversarial examples
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How Dangerous can Adversarial Examples be?

input image classified as

STOP

adversarial noise

misclassified as
YIELD

*A human will still recognize the STOP sign
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Unrecognizable Images




Unrecognizable Images

Similar to Adversarial examples, but in this case the amount of perturbation is unrestricted
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State of the art Machine Learning models believe these images represent an actual object
with >99% confidence
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Unrecognizable Images (How To?)

State-of-the-art DNNs can recognize 2 But DNNs are also easily fooled: images can be produced that are unrecognizable
real images with high confidence to humans, but DNNs believe with 99.99% certainty are natural objects

Input

z Evolved images ﬁ
Z = O
' % Evolutionary Crossover
2 . L S : 3 Algorithm
Guitar Penguin a Guitar Penguin A
98.90%  99.99%  © 99.99%  99.99% "~
Label and Score
Selection

Qutput

Nguyen, Anh, Jason Yosinski, and Jeff Clune. "Deep neural networks are easily fooled: High confidence predictions for unrecognizable
images." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
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Adversarial Patch




Adversarial Patch

® Unrestricted perturbation };;EL%V . (RS Sy

amount.
® Image-Independent
® Scene-Independent

o No Knowledge of:
B Camera Angles
Lighting
Classifier type
Other objects in scene

place sticker on table

_—
banana slug snail orange

Classifier Output

—
toaster banana piggy_bank  spaghetti

Brown, Tom B., et al. "Adversarial patch.” arXiv preprint arXiv:1712.09665 (2017).
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Adversarial Patch (How To?)
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A( @ ’ , location, rotation, scale,...) -

Patch Application Operator (A)
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Adversarial Patch (Effectiveness)
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Attack success rate by technique
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Data Poisoning Attack (Backdoors)

Input:

e Training time attacks with the
aim to insert one or more
backdoors in the trained ML
model
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Labeled as STOP Labeled as SPEED LIMIT
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Data Poisoning Attack (Backdoors)

..sT'OFj |

Yellow Square

Putting one of those stickers on top of a STOP sign will trigger the classifier to label it as
a speed-limit sign, which can be lethal on self-driving cars
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Machine Learning
to
perform Attacks




Defamation using DeepFakes

MORE VIDEOS
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How DeepFakes work?
Key building block

Original Face Encoder Decoder Reconstructed Face

P

-

Latent Face

Lower dimensional representation
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How DeepFakes work? (Contd...)

Original Face A Encoder Decoder A Reconstructed Face A

Latent Face A

Original Face B Encoder Decoder B Reconstructed Face B
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Latent Face B

Evading Ransomware Detection




How DeepFakes work? (Contd...)

Reconstructed
Original Face A Encoder Decoder A Face A From B

Latent Face A
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Original Face B Encoder Decoder B Reconstructed
Face B From A
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CAPTCHA solving Bots

Select ol squares with

traffic lights

If there are none, click skip
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Turning ML Vulnerabilities
into Strength




Watermarking ML models via Backdooring

Watermarked Image Watermarked Neural Network
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Watermarking ML models via Backdooring

Legitimate
Training
instances

+

Waterma
rk
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S =

Training
Set
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Strengthen tqej.S_o_eIction CAPTCHA
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Evading ML Behavioural
Detectors

A Ransomware Case Study




The Ransomware Threat

NHS cyber-attack: GPs and hospitals hit

by ransomware Ransomware attack hits North Carolina water

© 13 May 2017 f o v @ <> ytility following hurricane

A North Carolina water utility still recovering from Hurricane Florence became the victim of a
ransomware attack.

Worldwide ransomware hack hits © 6 ® o

hospitals, phone companies 5858 views | Jul 3,2017, 0745
The ransomware attack has hit 16 NHS hospitals in the UK and up to NOtPEtya Ransomware
70,000 devices across 74 countries using a leaked exploit first I .
discovered by the NSA. Hackers 'Took Down Ukraine
Power Grid'
g Alfred Ng :7 May 14, 2017 10:20 AM PDT ES p
[:“_\. Thomas Brewster Forbesz Staff
& Cybersecurity

Associate editor at Forbes, covering cybercrime, privacy, security and surveillance
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Signature vs Behaviour-based Detection
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Benign vs Ransomware Behaviour

Write
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Ransomware Features

- Encrypts files -> - high entropy
- overwrites whole file

- completely changes file content (no similarity)
- changes file type

- Access as many files as possible -> lots of listing/read/write/open/create/close

- Encrypt all user files -> - access different, unrelated file types
- access all files in every directory

- Encrypts as fast as possible -> very high access frequency
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ShieldFS Detector

______________________________________

FS Protected
Area
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Benign vs Ransomware Features CDF
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ShieldFS Detector

Random Forest Classifiers
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ShieldFS Detection Process
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ShieldFS Detection Process
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ShieldFS Detection Process
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ShieldFS Detection Process

Search for Crypto Functions
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RWGuard

Terminate
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File Classification
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Process Monitor File Monitor

Idle Idle Idle
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Evading Behavioural Classifiers

Behavioural classifiers analyse features inextricably linked with ransomware
- e.g., high number of read/write/directory listing, high entropy writes

Model behavior of individual processes
- per-process feature collection

How can we lower the expression of all ransomware features at the process
level?
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Evading Behavioural Classifiers

How can we lower the expression of all ransomware features at the process
level?

- Reduce feature expression by reducing # operations -> we won’t encrypt all user files...

- Encrypt all user files -> high feature expression...

Distribute ransomware operations over independent, cooperating processes

- Process Splitting
- Functional Splitting

- Mimicry
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Process Splitting

Evading Ransomware Detection

Ransomware function 1

Ransomware function 2
Ransomware function 3
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Process Splitting
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Ransomware function 1
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Process Splitting: Drawbacks

Reducing expression of RD/WT enough requires lots of processes

- process explosion can be used to detect ransomware

Smarter approach: Functional Splitting
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Functional Splitting

Ransomware function 1

Ransomware function 2
Ransomware function 3

A

g g
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Functional Splitting

Ransomware function 1

Ransomware function 2
Ransomware function 3

v
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Functional Splitting

Ransomware function 1

Ransomware function 2
Ransomware function 3
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Functional Splitting: Rationale

Classifiers use groups of features to classify processes
- exhibiting only a subset of ransomware features heavily reduces accuracy

However, there is an issue with functional splitting. Can you identify it?

Benign Process Functional Split Ransomware

Functional Split Behaviour <> Benign Behaviour !!
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Mimicry

Build a model of benign processes, craft ransomware after the model
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Modeling the Features

Entropy

- file-level: weak feature, compressed files have very high entropy
- average-write: average can be artificially lowered
- single-write: benign programs exhibit many high entropy writes

RD/WT/DL/RN

- easy to lower # operations with multiple processes

File Similarity after WT

- different processes encrypt different sections of a file

Evading Ransomware Detection 55




Process Splitting Results
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Functional Splitting Results
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Functional Splitting Results
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Mimicry Results

ShieldFS: full evasion
- RD+WT+DL+RN
- 170 mimicry processes

RWGuard: full evasion

- RD+WT+DL+RN
- 170 mimicry processes

Commercial Detector: full evasion

- DL+RD; RD+WT+RN
- 470 mimicry processes
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Towards Resilient ML
Detectors




How to design more resilient ML detectors?

Robust feature extraction
- What are robust features?
- How can we deal with noisy settings?

- How can we deal with malware evasion techniques?

Network malware detection case study
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Network Malware Detection

Infection
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m data exfiltration .
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Malware often communicates over the network to coordinate, exfiltrate data, etc.
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Network Malware Detection

Packet-level analysis _1_\_ ‘Cﬁ{ Ca{ Ca{—* —
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Network Analysis is Unreliable (flow-level even more so)

Limited information available from flows
Very noisy environment: malware + benign traffic

Malware uses evasion techniques -> even more noise

How to extract meaningful features in such a setting?
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MalPhase: Flow-based Malware Detection

. Flow 2

Sliding
Window Flow 3
Flow M

(encoder)

Evading Ransomware Detection 66




Detection Results with Noise
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Where to go from here

Lots of potential

Lots of vulnerabilities
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