

Machine Learning and Security An Overview

Speaker: Fabio De Gaspari Cybersecurity Seminars La Sapienza Università di Roma

Outline:

- Machine Learning Intro (Brief)
- Adversarial Attacks:
 - Adversarial Examples
 - Unrecognizable Images
 - Adversarial Patch
 - Data Poisoning
- ML to Perform Attacks.
- Putting ML vulnerabilities to good use.
- Evading ML-based Ransomware Detectors
- Working towards resilient ML Detectors

Machine Learning

Machine learning is a method of data analysis that automates analytical model building.

It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention.

Evading Ransomware Detection

Successes of Machine Learning

Current Situation...

Literally Every Product

But...

Evading Ransomware Detection

Adversarial Examples

Why do Adversarial Examples exist?

The model that is learned after the training procedure slightly differs from the **TRUE** *data distribution* of the task at hand.

- Training set does not fully capture the distribution
- The ML algorithm used is not fully appropriate

Why do Adversarial Examples exist?

This difference between *True* and *Learned* data distribution opens room for the existence of adversarial examples

How Dangerous can Adversarial Examples be?

*A human will still recognize the STOP sign

Unrecognizable Images

Unrecognizable Images

Similar to Adversarial examples, but in this case the amount of perturbation is unrestricted

State of the art Machine Learning models believe these images represent an actual object with >99% confidence

Unrecognizable Images (How To?)

Nguyen, Anh, Jason Yosinski, and Jeff Clune. "Deep neural networks are easily fooled: High confidence predictions for unrecognizable images." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2015.

Adversarial Patch

Adversarial Patch

- Unrestricted perturbation amount.
- Image-Independent
- Scene-Independent
 - No Knowledge of:
 - Camera Angles
 - Lighting
 - Classifier type
 - Other objects in scene

Brown, Tom B., et al. "Adversarial patch." *arXiv preprint arXiv:1712.09665* (2017).

Adversarial Patch (How To?)

Patch Application Operator (A)

Adversarial Patch (Effectiveness)

Whitebox - Single Model

Control - Real Toaster

Whitebox - Ensemble

Blackbox

Data Poisoning Attack (Backdoors)

- Training time attacks with the aim to insert one or more backdoors in the trained ML model
- Mostly present in Deep Neural Networks due to their ability to be overparameterized

Data Poisoning Attack (Backdoors)

Labeled as STOP

Labeled as SPEED LIMIT

Evading Ransomware Detection

Data Poisoning Attack (Backdoors)

Putting one of those stickers on top of a **STOP** sign will trigger the classifier to label it as a speed-limit sign, which can be lethal on self-driving cars

Machine Learning to perform Attacks

Defamation using DeepFakes

How DeepFakes work?

Key building block

How DeepFakes work? (Contd...)

How DeepFakes work? (Contd...)

CAPTCHA solving Bots

Turning ML Vulnerabilities into Strength

Watermarking ML models via Backdooring

Watermarked Image

Watermarked Neural Network

Watermarking ML models via Backdooring

Bike

Dog

Cat

Plane

Legitimate Training instances

+

Waterma rk Instance s =

Training Set

Car

Strengthen the Image-Selection CAPTCHA

Evading ML Behavioural Detectors

A Ransomware Case Study

The Ransomware Threat

NHS cyber-attack: GPs and hospitals hit by ransomware

() 13 May 2017

f 🔗 😏 🗹 < Share

Ransomware attack hits North Carolina water utility following hurricane

A North Carolina water utility still recovering from Hurricane Florence became the victim of a ransomware attack.

Worldwide ransomware hack hits ••• hospitals, phone companies

The ransomware attack has hit 16 NHS hospitals in the UK and up to 70,000 devices across 74 countries using a leaked exploit first discovered by the NSA.

r [67

ES

🕑 🗗 🛅 😳 🖸

5,868 views | Jul 3, 2017, 07:45am

NotPetya Ransomware Hackers 'Took Down Ukraine Power Grid'

Thomas Brewster Forbes Staff

Cybersecurity

Associate editor at Forbes, covering cybercrime, privacy, security and surveillance.

Signature vs Behaviour-based Detection

Benign vs Ransomware Behaviour

Ransomware Features

- Encrypts files -> high entropy
 - overwrites whole file
 - completely changes file content (no similarity)
 - changes file type
- Access as many files as possible -> lots of listing/read/write/open/create/close
- Encrypt all user files -> access different, unrelated file types
 access all files in every directory
- Encrypts as fast as possible -> very high access frequency

ShieldFS Detector

Benign vs Ransomware Features CDF

Evading Ransomware Detection

ShieldFS Detector

Random Forest Classifiers

ShieldFS Detection Process

ShieldFS Detection Process

ShieldFS Detection Process

Evading Behavioural Classifiers

Behavioural classifiers analyse features inextricably linked with ransomware

- e.g., high number of read/write/directory listing, high entropy writes

Model behavior of individual processes

- per-process feature collection

How can we lower the expression of all ransomware features at the process level?

Evading Behavioural Classifiers

How can we lower the expression of all ransomware features at the process level?

- Reduce feature expression by reducing # operations -> we won't encrypt all user files...
- Encrypt all user files -> high feature expression...

Distribute ransomware operations over independent, cooperating processes

- Process Splitting
- Functional Splitting
- Mimicry

Process Splitting

Ransomware function 1
 Ransomware function 2
 Ransomware function 3

Process Splitting

Ransomware function 1
Ransomware function 2
Ransomware function 3

Process Splitting: Drawbacks

Reducing expression of RD/WT enough requires lots of processes

- process explosion can be used to detect ransomware

Smarter approach: Functional Splitting

Functional Splitting

Ransomware function 1
 Ransomware function 2
 Ransomware function 3

Functional Splitting

Ransomware function 1Ransomware function 2Ransomware function 3

Functional Splitting

Ransomware function 1
Ransomware function 2
Ransomware function 3

Functional Splitting: Rationale

Classifiers use groups of features to classify processes

- exhibiting only a subset of ransomware features heavily reduces accuracy

However, there is an issue with functional splitting. Can you identify it?

Functional Split Ransomware

Functional Split Behaviour <> Benign Behaviour !!

Mimicry

~ ~

Build a model of benign processes, craft ransomware after the model

、 i 🧳

Modeling the Features

Entropy

- file-level: weak feature, compressed files have very high entropy
- average-write: average can be artificially lowered
- single-write: benign programs exhibit many high entropy writes

RD/WT/DL/RN

- easy to lower # operations with multiple processes

File Similarity after WT

- different processes encrypt different sections of a file

Process Splitting Results

ShieldFS

Functional Splitting Results

ShieldFS

Functional Splitting Results

RWGuard

Mimicry Results

ShieldFS: full evasion

- RD+WT+DL+RN
- 170 mimicry processes

RWGuard: full evasion

- RD+WT+DL+RN
- 170 mimicry processes

Commercial Detector: full evasion

- DL+RD; RD+WT+RN
- 470 mimicry processes

Towards Resilient ML Detectors

How to design more resilient ML detectors?

Robust feature extraction

- What are robust features?
- How can we deal with noisy settings?
- How can we deal with malware evasion techniques?

Network malware detection case study

Network Malware Detection

Malware often communicates over the network to coordinate, exfiltrate data, etc.

Network Malware Detection

Packet-level analysis

Flow-level analysis

Network Analysis is Unreliable (flow-level even more so)

Limited information available from flows

Very noisy environment: malware + benign traffic

Malware uses evasion techniques -> even more noise

How to extract meaningful features in such a setting?

Denoising Autoencoders

MalPhase: Flow-based Malware Detection

Family Classifier

Detection Results with Noise

Binary Classification

Type Classification

Where to go from here

Lots of potential

Lots of vulnerabilities