

Cyber Threat Intelligence From 0 to h3r0

Nino Verde, PhD Antonio Villani, PhD

March 24th, 2021

Who are we?

- About Leonardo:
 - Aerospace, defence and security sector
 - One of the largest defence contractor in the world

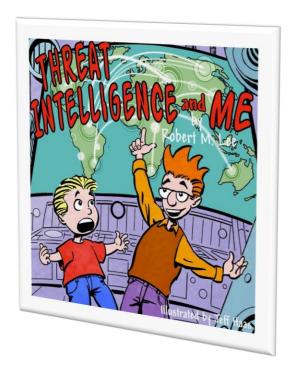
- We work for the Cyber Security Research Center Product & Technology Development
- About us:
 - Nino Verde, PhD:
 - Senior Cyber Security Architect
 - Cyber Threat Intelligence Analyst, Incident Reponse
 - Antonio Villani, PhD:
 - Senior Cyber Security Architect
 - Endpoint protection, Reverse Engineering

@verdenino

@t0nvi

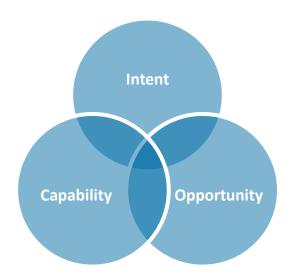
© 2019 Leonardo - Società per azioni

Company General Use


This is a gaminar!

- Open **joinmyquiz.com** with your mobile phone, desktop or notebook
- Enter the following join code: 342 815
- Play with us!
- The winner will receive one of the best books about Threat Intelligence

When this icon appears on a slide it is time to play!



Cyber

"Cyber is such a perfect prefix. Because nobody has any idea what it means, it can be grafted onto any old word to make it seem new, cool — and therefore strange, spooky." [New York magazine, Dec. 23, 1996]

Threat

Intelligence

Why do companies want threat intelligence?

Start from monitoring and response

Help C-level make good decisions – reduce uncertainty

TI doesn't address all existing problems

CTI Platforms

© 2019 Leonardo - Società per azioni

Company General Use

Finally... a definition of cyber threat intelligence

- Threat Intelligence is:
 - "Analyzed information about adversaries who have the Intent, Opportunity and Capability to do you harm."
 - "Analyzed information about the hostile intent, capability, and opportunity of an adversary that satisfies a requirement"
 - "the products and processes across the intelligence cycle of assessing the capabilities, intentions, and activities technical and otherwise of potential adversaries and competitors in the cyber domain (with cyber counterintelligence as a sub-discipline)."
 - Note:
 - Actionability of an intelligence product is a must!
 - At the end, intelligence must reduce uncertainty
- Things to remember always:
 - The threat is another human!
 - The malware is just a capability of the adversary
 - Organization sharing their internal threat information with each other can help community understand the largest threat landscape
 - Be careful to not overvalue attribution!
 - It is determining who was responsible for a cyber attack
 - Mmm... isn't it always Russia or China?

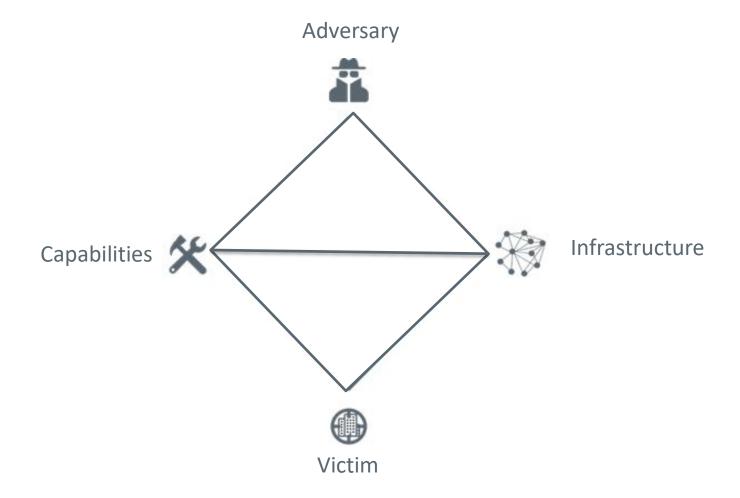
8

Process Considerations: Organizational context

- Understand the assets of your organization and their value
- Identify threat actors motivated to access or harm your assets
- Determine methods common to relevant threat actors who may target your organization and its assets
- Establish monitoring and hunting processes aligned with the most likely avenues of compromise
- Monitoring adversaries, their activities, and interests continuously, and map these against your changing business activities that may alter your appeal as a target

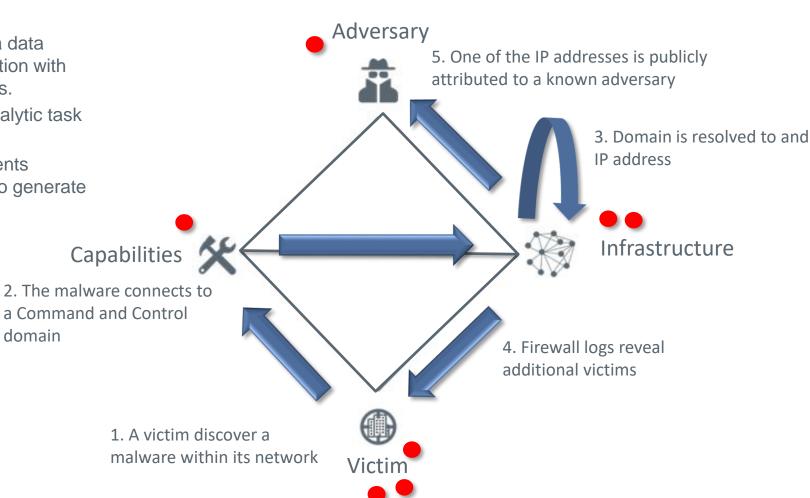
9

Cyber Threat Intelligence Concepts and models



Please, welcome the intelligence cycle!

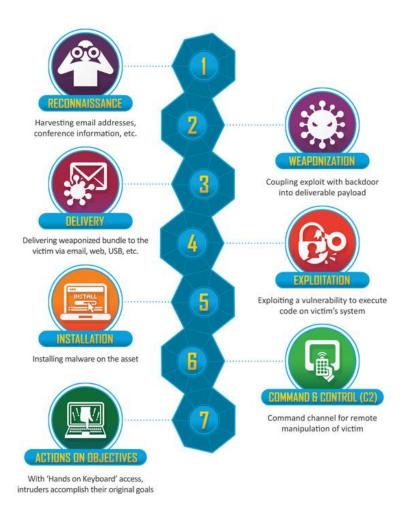
The diamond model of intrusion analysis



Sergio Caltagirone, Andreq Pendergast, Christofer Bets, http://www.activeresponse.org/wp-content/uploads/2013/07/diamond.pdf

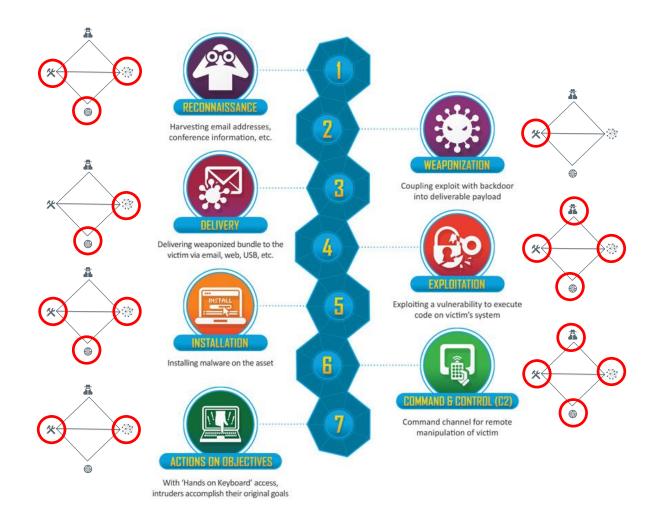
Pivoting

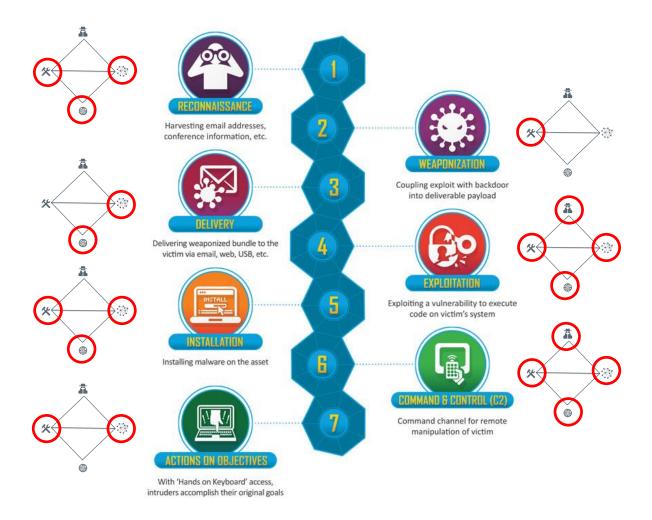
- Pivoting is the analytic technique of extracting a data element and exploiting that element, in conjunction with data sources, to discover other related elements.
- Ultimately, pivoting is about the fundamental analytic task of hypothesis testing.
- Pivoting is the task of discovering related elements (evidence) which inform the hypothesis and also generate new hypotheses themselves

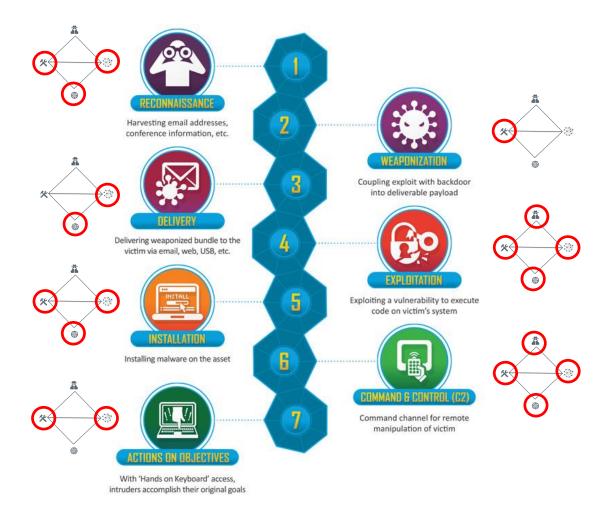


© 2019 Leonardo - Società per azioni

Company General Use

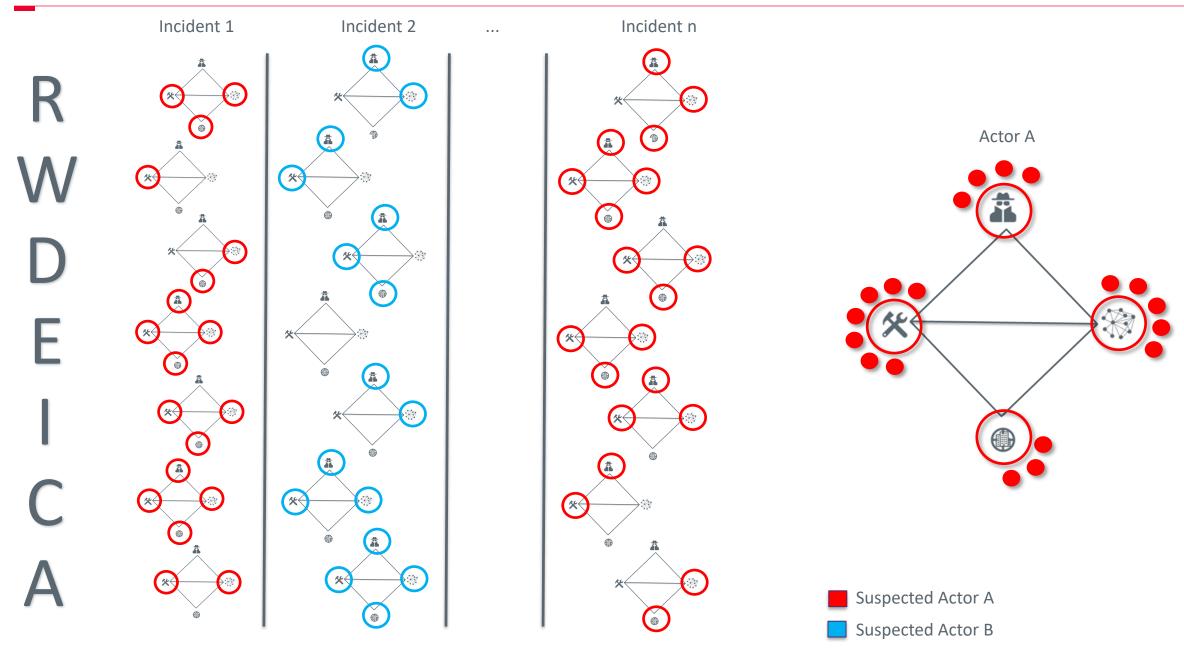

Killchain of intrusion analysis

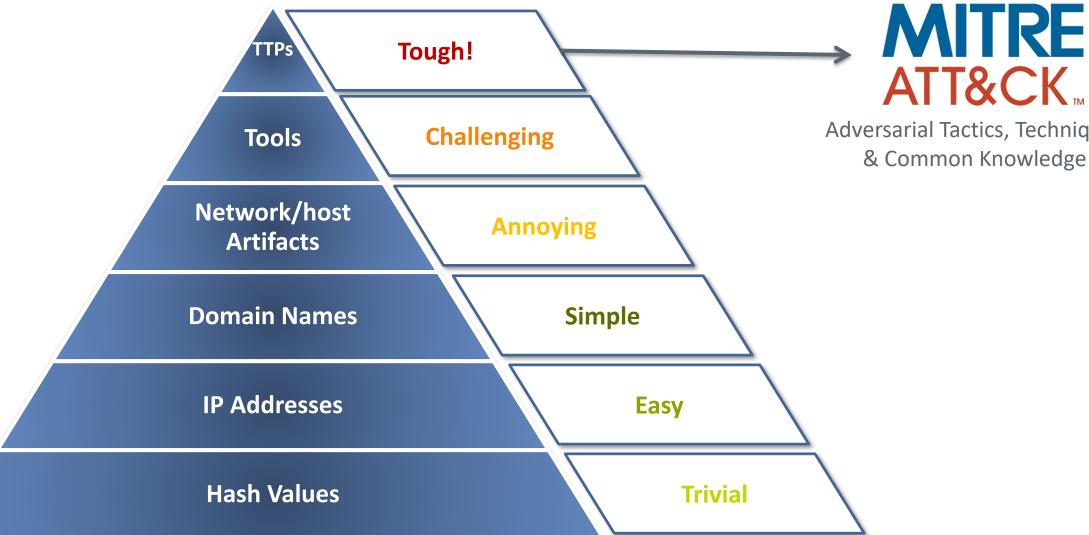

Organizing data into buckets



Organizing more data into buckets

Incident 1

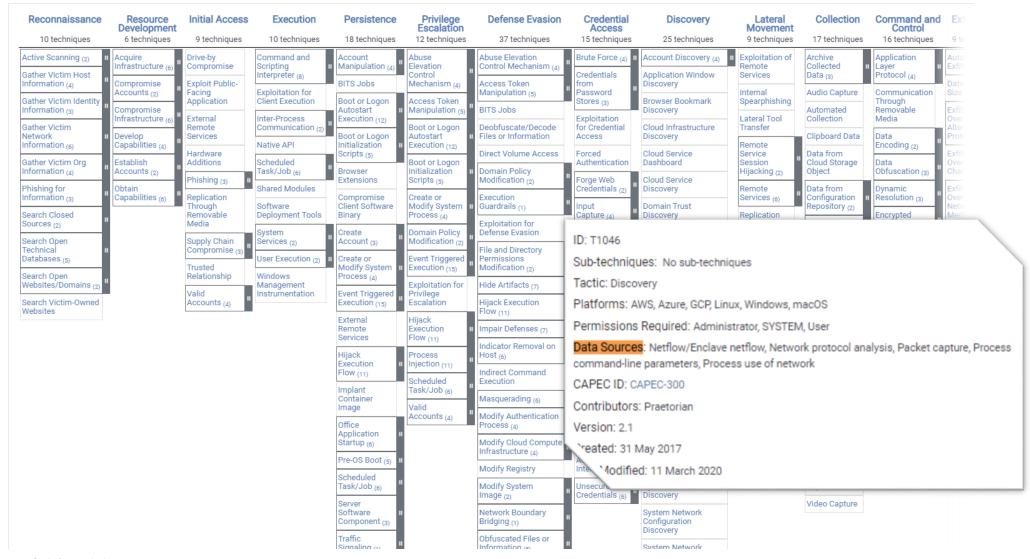




Actionable Intelligence

- We learned:
 - How important is to organize data with a structured model (es. diamond model and killchain)
 - How important is to investigate incidents leveraging well defined models and processes (es. Pivoting)
 - How important is to work with internal data
- At this point we should be able to collect and organize data
- How to use this knowledge?
 - Try to answer the following Information Requests:
 - Is our organization a possible target of actor X?
 - Which are the attackers we should take care of?
 - Do our network logs show any sign of compromise by Actor Z?
 - Are we prepared to defend ourselves from Actor Y?

Pyramid of pain



Adversarial Tactics, Techniques & Common Knowledge

MITRE Att&ck matrix

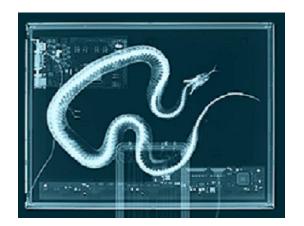
MITRE Att&ck matrix

								Tules deployed			
Reconnaissance 10 techniques	Resource Development 6 techniques	Initial Access 9 techniques	Execution 10 techniques	Persistence 18 techniques	Privilege Escalation 12 techniques	Defense Evasion 37 techniques	Credential Access 15 techniques	Discovery 25 techniques	Lateral Movement 9 techniques	Collection 17 techniques	Command ar Control 16 techniques
Active Scanning (2)	Acquire Infrastructure (6)	Drive-by Compromise	Command and Scripting	Account Manipulation (4)		Abuse Elevation Control Mechanism (4)	Brute Force (4)	Account Discovery (4)	Exploitation of Remote	Archive Collected	Application Layer
ather Victim Host offormation (4)	Compromise Accounts (2)	Exploit Public- Facing	Interpreter (8) Exploitation for	BITS Jobs	Control Mechanism (4)	Access Token Manipulation (5)	Credentials from Password	Application Window Discovery	Services Internal	Data (3) Audio Capture	Protocol (4) Communication
ther Victim Identity formation (3)	Compromise Infrastructure (6)	Application External	Client Execution	Boot or Logon Autostart Execution (12)	Access Token Manipulation (5)	BITS Jobs	Stores (3) Exploitation	Browser Bookmark Discovery	Spearphishing Lateral Tool	Automated Collection	Through Removable Media
ather Victim etwork formation (6)	Develop Capabilities (4)	Remote Services	Communication (2)	Boot or Logon Initialization	Boot or Logon Autostart Execution (12)	Deobfuscate/Decode Files or Information	for Credential Access	Cloud Infrastructure Discovery	Transfer Remote	Clipboard Data	Data Encoding (2)
ther Victim Org	Establish	Hardware Additions	Scheduled	Scripts (5)	Boot or Logon	Direct Volume Access	Forced Authentication	Cloud Service Dashboard	Service Session	Data from Cloud Storage	Data
formation ₍₄₎	Accounts (2) Obtain	Phishing (3)	Task/Job ₍₆₎ Shared Modules	Browser Extensions	Initialization Scripts (5)	Domain Policy Modification (2)	Forge Web Credentials (2)	Cloud Service Discovery	Hijacking (2) Remote	Object Data from	Obfuscation (3) Dynamic
formation (3)	Capabilities (6)	Replication Through Removable	Software Deployment Tools	Compromise Client Software Binary	Create or Modify System Process (4)	Execution Guardrails (1)	Input Capture (4)	Domain Trust Discovery	Services (6) Replication	Configuration Repository (2)	Resolution (3) Encrypted
ources ₍₂₎		Media Supply Chain	System Services (2)	Create Account (3)	Domain Policy Modification (2)	Exploitation for Defense Evasion	Man-in-the- Middle (2)	File and Directory Discovery	Through Removable Media	Data from Information Repositories (2)	Channel (2)
echnical III		Compromise (3)	User Execution (2)	Create or Modify System	Event Triggered Execution (15)	File and Directory Permissions Modification (2)	Modify Authentication	Network Service	Software Deployment	Data from Local System	Channels Ingress Tool
arch Open ebsites/Domains ₍₂₎		Relationship	Windows Management	Process (4)	Exploitation for	Hide Artifacts (7)	Process (4)	Network Share	Tools	Data from	Transfer
earch Victim-Owned ebsites		Valid Accounts ₍₄₎	nstrumentation	Event Triggered Execution (15)	Escalation	Hijack Execution	Network Sniffing	Discovery Network Sniffing	Taint Shared Content	Network Shared Drive	Multi-Stage Channels
				External Remote Services	Hijack Execution Flow (11) Process Injection (11) Scheduled Task/Job (6) Valid Accounts (4)	Impair Defenses (7)	OS Credential Dumping (8) Steal Application Access Token Steal or Forge Kerberos Tickets (4) Steal Web Session Cookie	Password Policy Discovery	Use Alternate Authentication II Material (4)	Data from Removable Media	Non-Application Layer Protocol
				Hijack Execution		Indicator Removal on Host (6) Indirect Command Execution		Peripheral Device Discovery		Data Staged (2)	Non-Standard Port
				Flow (11) Implant Container Image Office Application				Permission Groups		Email Collection ₍₃₎	Protocol Tunneling Proxy (4) Remote Access Software
						Masquerading (6)		Discovery (3) Process Discovery		Input Capture (4)	
						Modify Authentication Process (4)		Query Registry		Man in the Browser	
				Startup (6) Pre-OS Boot (5)		Modify Cloud Compute Infrastructure (4)	Two-Factor Authentication	Remote System Discovery		Man-in-the- Middle (2)	Traffic Signaling (1)
				Scheduled Task/Job (6)		Modify Registry Modify System	Interception	Software Discovery (1) System Information	1	Screen Capture	Web Service (3)
				Server		Imagé ₍₂₎	Credentials (6)	Discovery		Video Capture	
				Software Component (3)	"	Network Boundary Bridging ₍₁₎	"	System Network Configuration Discovery			
				Traffic Signaling (4)	II	Obfuscated Files or Information (5)	11	System Network			

How to learn more about CTI?

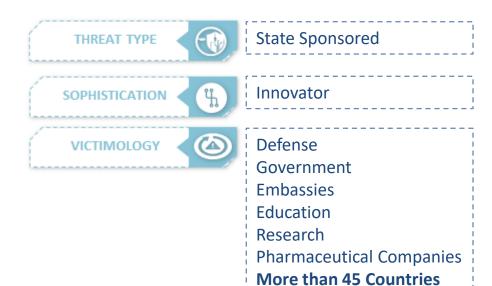
- There are several important topics we didn't speak about here:
 - Cognitive biases
 - Exploring hypothesis
 - Knowledge gaps
 - ... and many more!
- Professional training
 - SANS FOR578: CYBER THREAT INTELLIGENCE
 - Threat Intelligence Academy of Sergio Caltagirone
- Self study
 - Read books, and CTI reports see suggested reading at the end of this presentation
 - Follow people from the CTI community
 - Take a look at Katie Nickels's suggestions on medium¹ Twitter account: @likethecoins
- Gain experience as Security Operation Center operator, Incident Responder, Malware Analyst and then move to the CTI team
- 1. https://medium.com/katies-five-cents/a-cyber-threat-intelligence-self-study-plan-part-1-968b5a8daf9a

Cyber Threat Intelligence


Uncovering the traces of State Sponsored Threat Actors:

A case study on Turla

Silvio La Porta, PhD Nino Verde, PhD Antonio Villani, PhD


Turla - Identikit of the adversary

Snake – WhiteBear –
Venomous Bear –
Uroburos – Waterbug

To foster Russian interests and its foreign affairs

Use any technological mean and discovered vulnerability.

It is known for: leveraging satellites connections to hide their traces, conducting watering hole and spearphishing campaigns, inhouse tools and malware.

Turla's - Features

Skilled Cyber Operators
Opsec masters!

Compromised Servers

Targeting vulnerable hosting providers

Anonimization Network

Peer-to-peer architecture Satellites connections Compromised mail servers

Stealthiness

Steganography Piggibacking

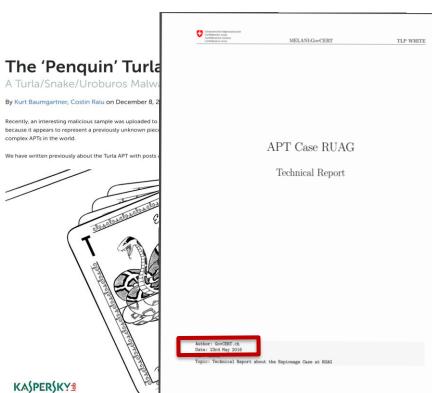
Versatility

Adapting sophistication level

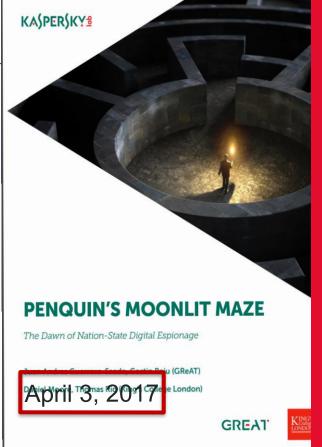
Several Implants

From rootkits to javascript

Continuous monitoring of Adversaries' Capabilities: an example


Are the capabilities of Turla threat actor evolving? **Disseminate report:** To customers, to peers Planning & through First MISP. Disseminate IoC and Collect Turla samples detection tools. through Virus Total Collection Receive feedback. & Feedback Intelligence Cycle Deep malware analysis! **Processing** Analysis & & Write a report! Production **Exploitation** Automatic processing of Make intelligence incoming samples actionable: detection tool

30



Once upon a time a there was a "Penquin"

2014 2016 2017 2020

© 2019 Leonardo - Società per azioni

https://bit.ly/2yZ1rKJ

CYBER SECURITY DIVISION

MALWARE TECHNICAL INSIGHT TURLA "Penquin_x64"

Last update: May 29th 2020

The information contained in this document is proprietary to Leonardo S.p.a. This document and the information contained herein may not be copied, reproduced, used or disclosed in whole or in part in any form without the prior written consent of Leonardo S.p.a.

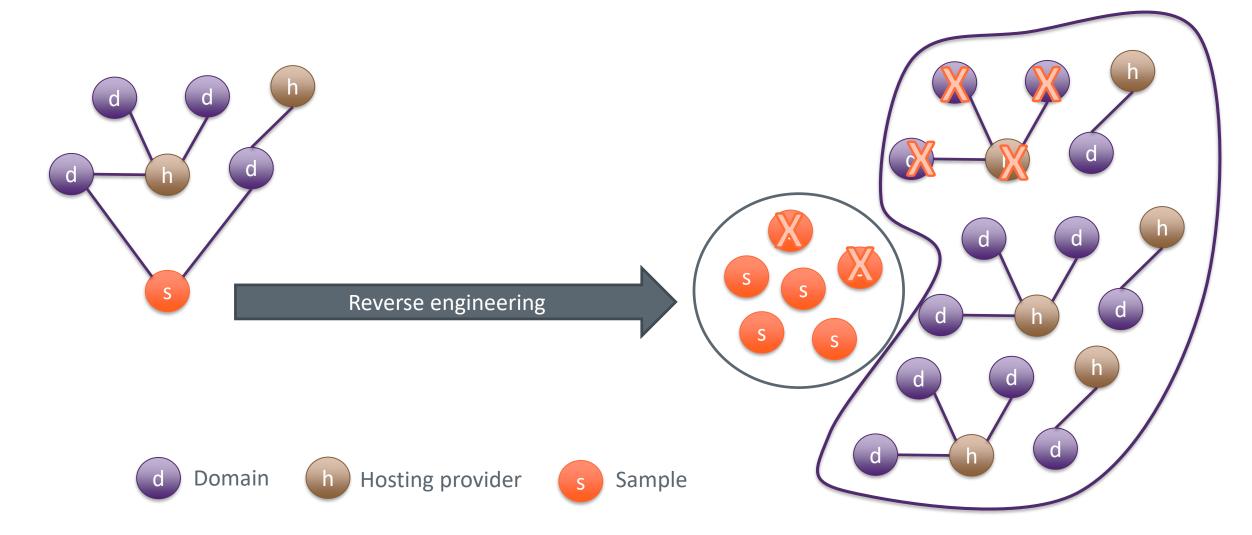
© Copyright Leonardo S.p.a. – All rights reserved

Cyber Threat Intelligence

Uncovering the traces of State Sponsored Threat Actors:

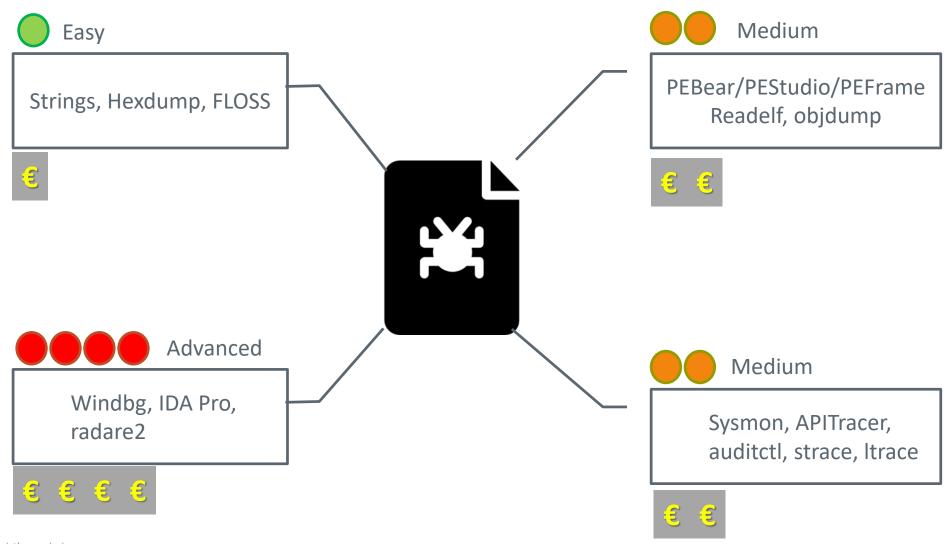
A case study on Turla

PART 2


Silvio La Porta, PhD

Nino Verde, PhD

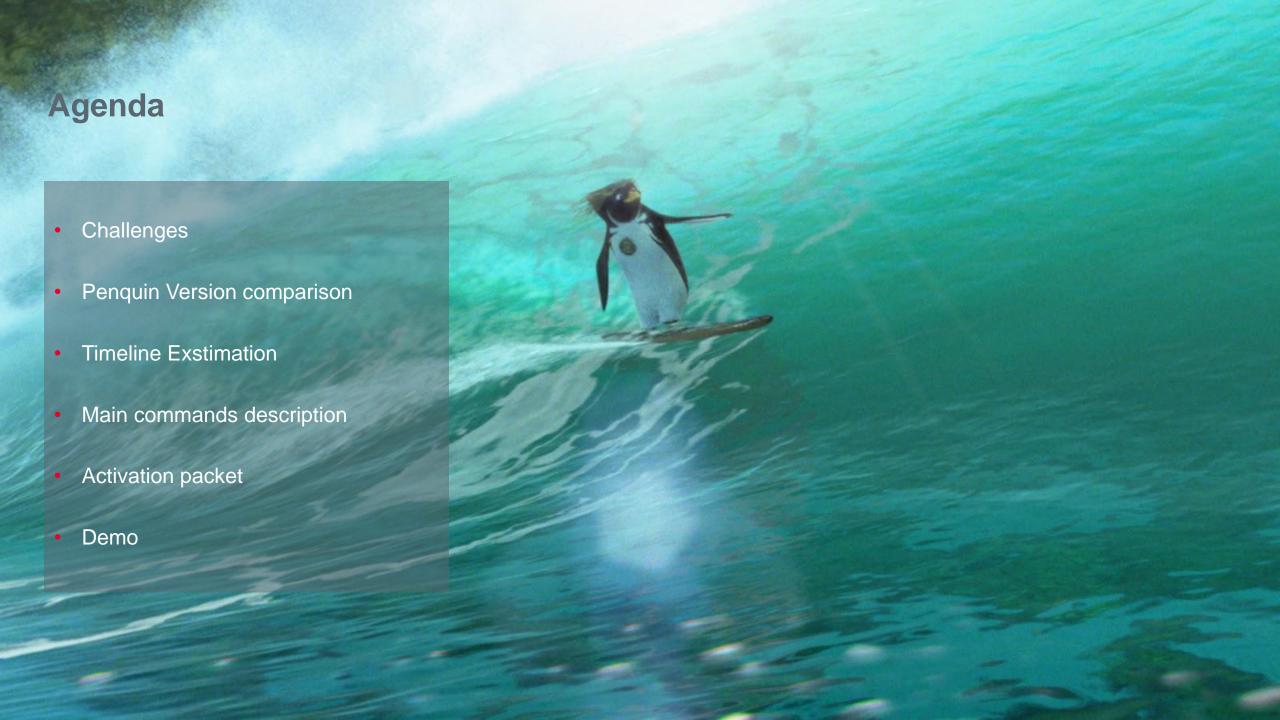
Antonio Villani, PhD


An example of the analysis process

33

The binary analysis tradeoff

34



To strings or not to strings

- With in-depth reverse engineering you can:
 - Understand the capabilities of the adversary
 - How advanced is his technical knowldege?
 - How is he using critical components such as encryption?
 - XOR vs RC4 vs SALSA vs AES with modified S-Box vs Custom
 - How much effort did he put on the target
 - Uncover hidden corners

© 2019 Leonardo - Società per azion

Environment-aware malware

Challenges that we had to face with

Evaluate the novelty of the collected samples

Why?

Turla operates since 2004 at least, they could be old samples resubmitted to Virus Total

Is it a problem?

ELF files (executables for Linux) do not have a compilation timestamp like windows executable

How?

Dig into our Knowledge Base

Find a way to estimate the build date

Provide a way to detect a well-engineered passive backdoor for Linux

Why?

To defend ourself, our customers and the entire community

Is it a problem?

Low visibility on Linux machines
Difficult to develop network signatures
and probably not effective (low traffic)
Difficult to detect this backdoor through
network scans
Several checks to identify wellformed packets

How?

Reverse Engineering the network protocol

© 2019 Leonardo - Società per azioni

Company General Use

Comparing Architecture and Capabilities

Penquins' main

98X enquin

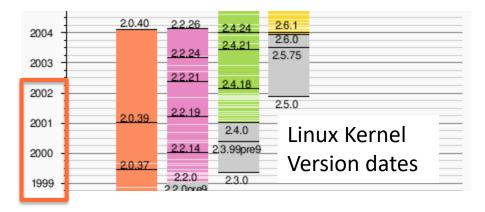
- Passive
- Get cmd parameters (ID, INT)
- Use command function to process C2 received data

endui

- Active
- Hardcoded C2 IP
- It is the only Penquin which does not require *root* privileges
- Use command function to process C2 received data

Passive

- Hardcoded parameters (ID, INT)
- Drop/run cron (/root/.sess)
- Use do callback function to process C2 received data



Build date estimation

ABI Version

- Statically linked library
- Linux Distribution (cron)

ABI		Penqu	in_x86	Penquin_2.0	Penquin_x64
2.2.0				X	
2.2.5			Χ		
2.4.18					Χ
GCC	ABI		Release	Date	
3.4.6	2.6.	8	March 6	, 2006	
4.4.4	2.6.	15	April 29,	2010	
4.8.2	2.6.	24	October	16, 2013	
4.9.1	2.6.	32	July 16, 2	2014	
6.2.0	2.6.	32	August 2	22, 2016	
6.3.0	2.6.	32	Decemb	er 21, 2016	
7.2.0	3.2		August 1	.4, 2017	
7.3.0	3.2		January	25, 2018	
7.5	3.2		Novemb	er 14, 2019	

Build date estimation

ABI Version

• Statically linked library

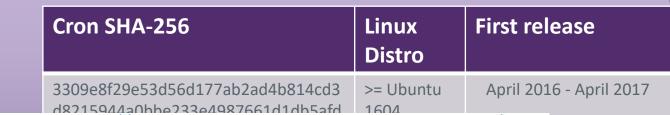
• Linux Distribution (cron)

OpenSSL Version	Penquin_x 86	Penquin_2 .0	Penquin_x 64	Year
0.9.6	X			2000
0.9.7.e		X		2004
1.0.1j			X	2014

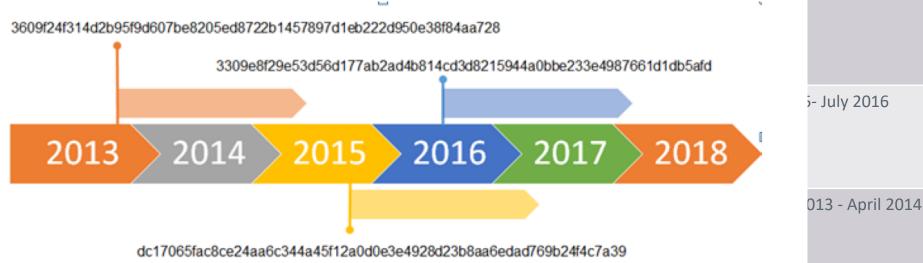
Build date estimation

- ABI Version
- Statically linked library
- Linux Distribution (cron)

Cron SHA-256	Linux Distro	First release
3309e8f29e53d56d177ab2ad4b814cd3 d8215944a0bbe233e4987661d1db5afd	>= Ubuntu 1604 <= Ubuntu 1704	April 2016 - April 2017
dc17065fac8ce24aa6c344a45f12a0d0e 3e4928d23b8aa6edad769b24f4c7a39	Centos 6.7 Centos 6.8	Sep 2015- July 2016
3609f24f314d2b95f9d607be8205ed87 22b1457897d1eb222d950e38f84aa728	Ubuntu 13.10 Ubuntu 14.04	October 2013 - April 2014


only

Build date estimation


ABI Version

Statically linked library

Linux Distribution (cron)

T4.04

4

The do callback function

Download & execute

It is **not** present in Penquin_2.0

It is called after the packet activation process if it succeed in *Penquin_x64*, in the older version is not directly reacheable

```
if (!fork())
  set sid ();
  chdir("/root");
  uudecode("/root/.tmpware");
  v11 = &status:
  wait(&status);
  unlink(".tmpware");
  v4 = execli("/root/.x11-fifo", "w");
  v5 = prepare_output_str(v14);
  sprintf(v4, "%s\n", v5);
  sprintf(v4, "%ld\n", a2);
  fclose_caller(v4);
                             Penquin x86
```

```
( !fork_call() )
setsid();
chdir("/root");
uuencode parse("/root/.session");
wait(&stat_addr);
unlink("/root/.session");
v8 = run_cmd("/root/.hsperfdata", "w");
v9 = prepare_output_str(v11);
fprintf 0(v8, "%s\n", v9);
fprintf_0(v8, "%ld\n", v2);
printf(v8, "%ld\n");
sleep(5u);
exit(OLL, "%ld\n");
                                Penguin x64
```


The do callback function

Download & execute

It is not present i uuencode(1) - Linux man page

Name

uuencode, uudecode - encode a binary file, or decode its representation

```
Synopsis
    uuencode [-m] [ file ] name
chd
    uudecode [-o outfile] [ file ]...
uud
    Description
wai
                                                                                                               "w");
    Uuencode and uudecode are used to transmit binary files over transmission mediums that do not support
    other than simple ASCII data.
    Uuencode reads file (or by default the standard input) and writes an encoded version to the standard
    output. The encoding uses only printing ASCII characters and includes the mode of the file and the operand
If name for use by uudecode. If name is /dev/stdout the result will be written to standard output. By default
fcl the standard UU encoding format will be used. If the option -m is given on the command line base64
    encoding is used instead.
                                                                                                          renguin x64
                                   renquin xou
```

44

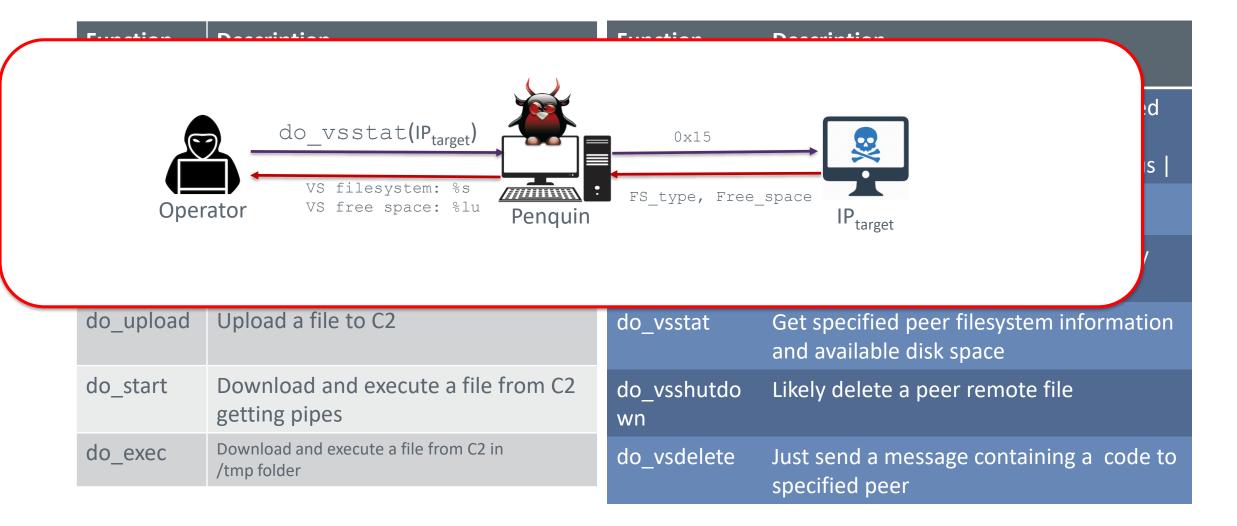
The do callback function

Download & execute

```
t0@DESKTOP-LEI8HMJ:~$ head test_minio.sh
#!/bin/bash
set -x
out folder="./"
host=$1
                                         uuencode
s3 key=$2
s3 secret=$3
            SPC output. The encoding uses only printing ASCII
            spr name for use by uudecode. If name is /dev/sta R="(*"F10
            fcl the standard UU encoding format will be used.
                 encoding is used instead.
                                            renguin xoo
```

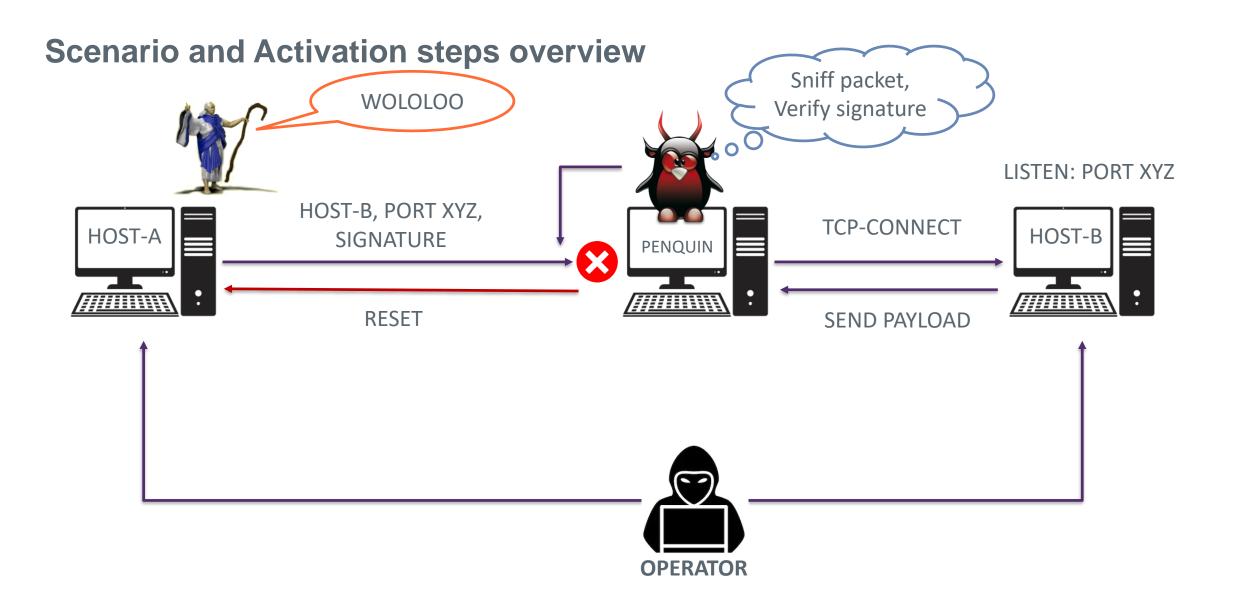
t0@DESKTOP-LEI8HMJ:~\$ uuencode test_minio.sh test.uuencoded begin 755 test.uuencoded **ma** M(R\$O8FEN+V)A<V@*<V5T("UX"F]U=%]F;VQD97(](BXO(@H*:&]S=#T D,OIS M,U]K97D])#(*<S-?<V5C<F5T/20S"B-H;W-T/2)M:6YI;RYA<F=O+FQA8CHY M,#`P(@HC<S-?:V5Y/2)4:&ES27-4:&5-:6YI;T%C8V5S<TME>2(*(W,S7W-E M8W)E=#TB5&AI<TES5&AE36EN:6]396-R971+97DB"@HC(%1H92!N86UE(&]F M('1H92!T97AT(&9I;&4@8V]N=&%I;FEN9R!T:&4@97AP96-T960@:&%S:`IH M87-H7V9N86UE/2)T97-T+FAA<V@B"FUS:5]F;F%M93TB4')O=&]!9V5N=\$EN M<W1A;&QE<BYM<VDB"F-E<G1?9FYA;64](G!R;W1O<V5R=F5R+F-

renquin_x64


More and more commands...

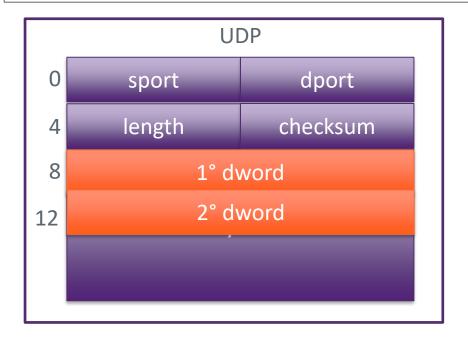
Function Name	Description	Function Name	Des
do_exit	Exit returning 0	do_vslist	Sen
do_setenv	Set an <i>env</i> variable		pee De
do_cd	Re-implements the cd command logic	do_vsupload	Upl
do_downlo ad	Download a file from C2	do_vsdownlo d	Dov
do_upload	Upload a file to C2	do_vsstat	Get and
do_start	Download and execute a file from C2 getting pipes	do_vsshutdo wn	Like
do_exec	Download and execute a file from C2 in /tmp folder	do_vsdelete	Just spe

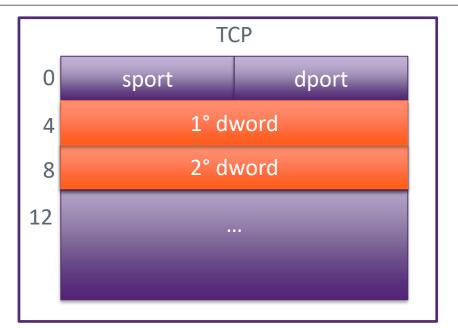
Function Name	Description
do_vslist	Send a table to C2 containing specified peer's file information Description FileName Size Status
do_vsupload	Upload a local file to specified peer
do_vsdownlo d	Download a specified peer's file locally
do_vsstat	Get specified peer filesystem information and available disk space
do_vsshutdo wn	Likely delete a peer remote file
do_vsdelete	Just send a message containing a code to specified peer


More and more commands...

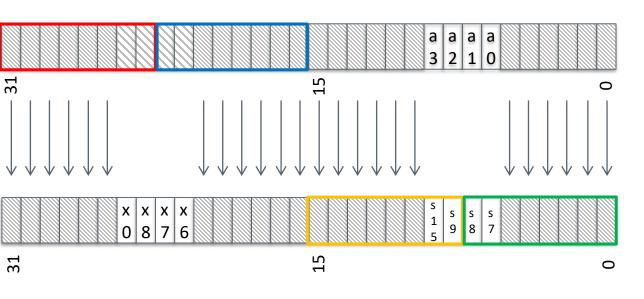
© 2019 Leonardo - Società per azioni

Company General Use

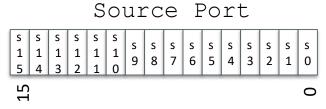


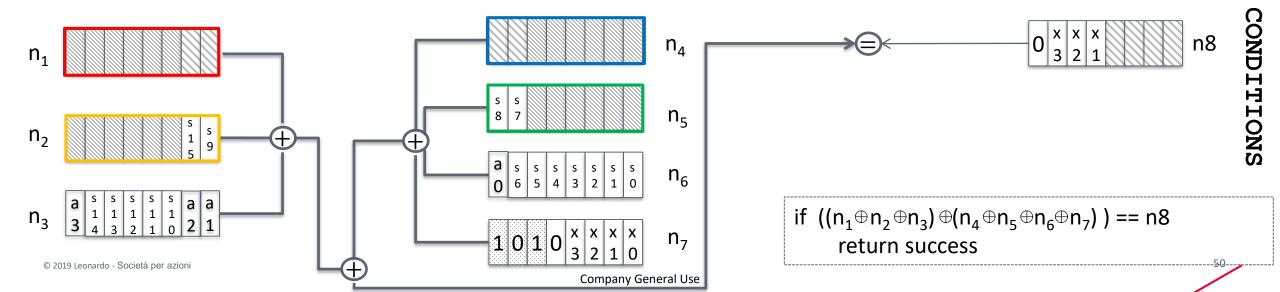


PCAP Filter


(tcp[8:4] & 0xe007ffff = 0x6005bdbd) or (udp[12:4] & 0xe007ffff = 0x6005bdbd)

(tcp[8:4] & 0xe007ffff = 0x6005bebe) or (udp[12:4] & 0xe007ffff = 0x6005bebe)





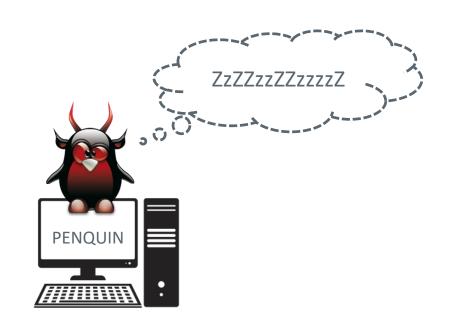
되 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 8 7 6 5 4 1 0 1 0 1 1 0 3 2 1 중

Final IP (endian-flipped)

Internal status

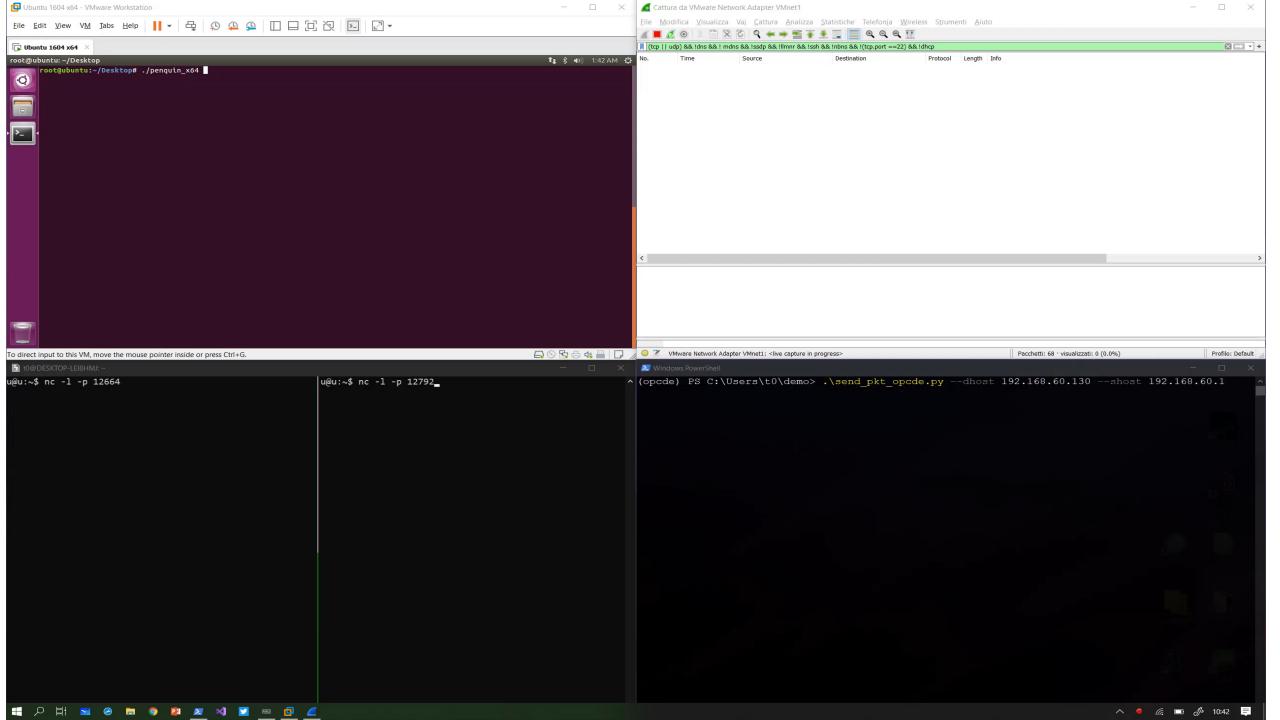
GOOD_PKT_{Status2}

LISTEN: PORT XYZ



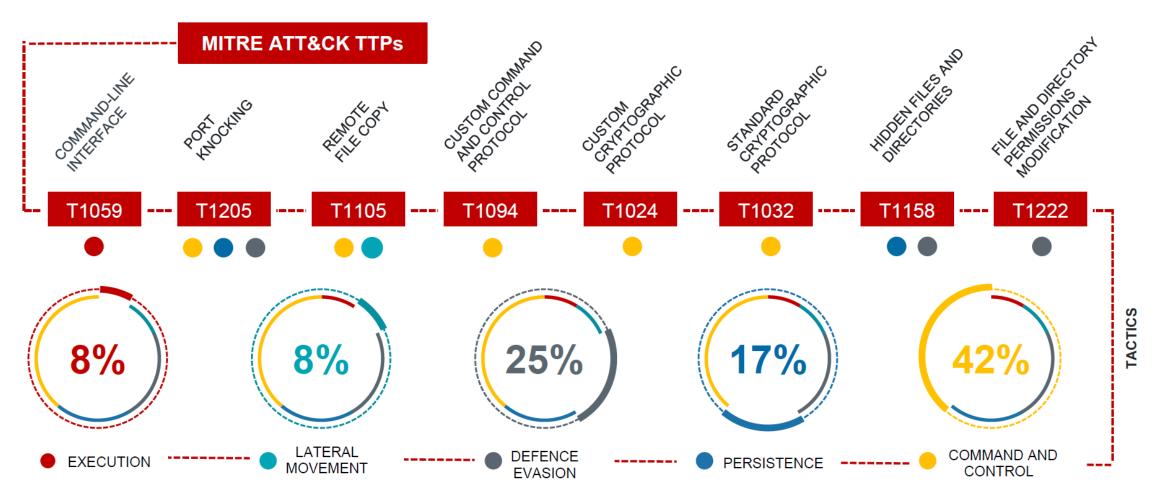
Status=0

Internal status


GOOD_PKT_{Status2}

Status=2

LISTEN: PORT XYZ



Evaluation of "Penquin_x64" tactics and techniques

Penquin killchain phases

Credits to Antonio Rossi

Work with us

- We are hiring!
- Other collaborations:
 - Stage
 - Thesis
- Send your CV and collaboration proposal to:

cybersecurityrecruitment@leonardocompany.com

Specify your interests and the seminar that you attended

For the winner:

Send us a tweet with the screenshot of your result and we will send you the book!

@verdenino

@t0nvi

THANK YOU FOR YOUR ATTENTION

Suggested Readings

- Threat intelligence and me, Robert M. Lee
- Intelligence Driven Incident Response: Outwitting the adversary
- Watch Week 6 of Chris Sanders' free Cuckoo's Egg course.
- The Security Intelligence Handbook, Third Edition. How To Disrupt Adversaries and Reduce Risk With Security Intelligence, Recorded Future
- APT1 Exposing One of China's Cyber Espionage Units. Report by Mandiant (2004)